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Imaging Spectroscopy: Concept
2



Applications

 Terrestrial domains

 Ustin et al., 2004; Jetz et al., 2016; Asner et al., 2017

 Aquatic environments

 Hochberg, 2011; Fichot et al., 2015

 Estimation of surface reflectance requires removal of
atmospheric effects

 Atmospheric constituents typically estimated from
radiance spectra

 ACORN (Kruse, 2004), ATCOR (Richter & Schlapfer, 2002),
FLAASH (Perkins et al., 2012), ATREM (Gao et al., 1993)

 Atmospheric correction mature and performs well for many
conditions (e.g. clear skies with near-nadir viewing)
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Problems with Current Approach

 Limits atmospheric information that can be
recovered

 Less accurate for certain observing conditions

 High water vapor, extreme viewing angles, high aerosol
loading, non-Lambertian surfaces

 Orbital missions will not have flexibility to wait for
optimal weather conditions

 Tropical and subtropical environments often show extreme
conditions that challenge existing approaches

 No uncertainty quantification
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Minimize “cost function” by optimizing model-measurement mismatch 

and using Bayesian prior where there is no information from measurements  
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Advantages of Joint Estimation
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 Permits atmosphere/surface coupling, relaxes Lambertian assumption

 Uses information across the VSWIR spectral range to characterize
aerosols, water vapor and surface, improving accuracy of reflectance
retrievals

 Rigorous probabilistic formulation incorporates ancillary
measurements via the prior distribution

 Degree of Freedom (DOF) analysis permits evaluation of VSWIR
atmospheric information content

 Posterior uncertainty estimates for use in downstream analyses



Retrieval Comparison
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Iterative Retrieval
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Retrieval Results
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Retrieval Results
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Fast “Full Physics” RT
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 Two-stream exact-single-scattering (2S-ESS) model (Spurr and Natraj, 2011)

 2S computes multiple scattering field using two-stream approximation

 ESS computes single scattering field accurately, including atmospheric sphericity effects

 Incorporates state-of-the-art representations

 Delta-M scaling

 Nakajima-Tanaka (N-T) correction

 Surface BRDF

 Analytic Jacobians

 For calculations in a 20-layer atmosphere with 100 spectral points, 2S-ESS is
~800 times faster compared to DISORT with eight discrete ordinates in the
half-space

 Accurate to within 0.1% of an “exact” RT model, but with computational speed
comparable to two-stream models



2S-ESS Model Benefits

 Can be used for scenarios with heavy aerosol loading

 Systematic errors due to cirrus can be accounted for

 Opens up avenues for simultaneous retrievals of
surface, aerosols, water vapor and trace gases (e.g.
NO2, CH4, CO2)
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Emulation of RTM Ouput

 Nonparametric regression model

 More accurate alternative to lookup tables

 Permits very high dimensional state vectors

 Neural network models should enable many-frames-per-second
retrievals

 Five orders of magnitude speed improvement over MODTRAN-based
model with negligible accuracy penalty
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Future Work

 Improving aerosol retrievals by using better priors
(Kindel and Massie)

 Improving surface retrievals by using BRDFs

 Testing model using extensive AVIRIS-NG India
dataset

 Validation using in situ measurements
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